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A quasi-one-dimensional non-linear model is developed for the axisymmetric 
dynamics. Streaming is coaxial with a cylindrical ‘wall’ supporting a potential 
having a linear axial dependence. In  addition to a tangential field due to an 
axial current, the stream surface supports charges in proportion to the stream- 
wall potential difference; hence it is driven by normal and shear electric stresses. 
Free charge and polarization waves compete with the destabilizing effect of 
capillarity. With supercritical steady flow (the local jet velocity exceeds the 
wave velocity), it is found that the stream accelerates or decelerates in accordance 
with whether an equivalent longitudinal force density is respectively positive 
or negative. With subcritical flow, the effect of the force is reversed. Experi- 
ments demonstrate accelerating and decelerating flow rkgimes. Model and ex- 
periment are in agreement with regard to choking at  a critical radius, and the 
dependence of radius and potential on position. Hysteretic switching between 
flow regimes is obtained by adjustment of stream and wall potentials, and is 
explained in terms of the model. 

1. Introduction 
Droplets of liquid are often produced with the aid of an electric stress. Examples 

are the particles formed as liquid is drawn from fine capillaries a t  an elevated 
potential for use in colloid propulsers (Hogan, Carson, Schneider & Hendricks 
1964) and image-making (Heil & Scott 1969). Electrostatic paint spraying 
equipment makes a similar use of the electric field with the particles sometimes 
formed a t  the edge of an electrified sheet (Miller & Spiller 1964). One technique 
for making particles involves the excitation of capillary instability of a circular 
jet to pinch off drops of the desired size (Sweet 1964), a process that can be 
augmented by the addition of a radial electric stress at the interface (Basset 
1894; Melcher 1963, p. 123; Taylor 1968). Even though the electric field is 
exploited as a means of atomizing the fluid, it is well documented that the field 
can also prevent the formation of particles (Zeleny 1917; Taylor 1969a; Carson & 
Hendricks 1964). 

Jets of slightly conducting liquids carrying longitudinal currents are often 
observed to be free of capillary instability (Taylor 1969 b ) .  Reports on remarkably 
long and stable streams in the range of to 10-4m radius typically describe 
experiments with fluids conducting as much as glycerine, or even water. The 
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axial current is conducted to the stream at the orifice, and alternatively returned 
by means of contact with a downstream electrode, by breakup of the stream 
into charge-carrying droplets, or through a corona discharge in the neighbour- 
hood of the stream termination. 

Even though there are some analogies with the pinch effect of magneto- 
hydrodynamics, it should be recognized that currents are typically in the 
microampere range, with longitudinal fields of E N lo6 vim ;-electro ' static ' forces 
are essential with magnetic fields of negligible significance. 
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FIGURE 1. Current through a circular cylindrical stream having a relatively short electrical 
relaxation time is constant; e is the perturbation electric field. A constriction is accom- 
panied by an increase in the local tangential field, hence a polarization restoring surface 
force which counteracts the destabilizing surface force due to surface tension. 

The observed tendency of the field to stabilize some flows can be traced to the 
relatively high permittivity and conductivity of the streams. For a capillary 
(sausage) instability on a highly-conducting stream (as illustrated in figure I),  
the total steady current I through a given cross-section must be constant. There 
results a concentration of longitudinal field En in the constricted regions. The 
increased electric field tangential to the interface at the constriction produces 
an increased outward-directed polarization surface force density T, which tends 
to restore the equilibrium radius. (The interface of a polarizable fluid in a 
tangential electric field is drawn toward the region of lesser polarizability.) By 
contrast with highly insulating fluids (Nayyer & Murty 1960), stabilization of 
the highly conducting jet depends on distortions of the equilibrium field by 
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virtue of the stream conductivity, rather than permittivity. The stability is, 
in part, a matter of the normal stress equilibrium, a view supported by a detailed 
analysis of the stability for perturbation from an equilibrium wherein there are 
no electrical shear stresses (Melcher & Schwarz 1968; Saville 1970). What 
complicates a typical experiment is the equilibrium shear stresses also caused by 
the electric field. The axial current ensures that the interface is subject to a 
tangential electric field. If conduction dominates convection, the field interior 
to the stream is independent of the field constraints in the exterior region. 
However, the distribution of stream potential determines the distribution of 
charge on the interface, hence the attendant electric shear stress in the axial 
direction. The surface charges are distributed in a manner which depends not 
only on the stream’s potential, but on the location of images in the space sur- 
rounding the stream : usually determined by the electrodes comprising the stream 
orifice and sink. 

The field surrounding a stream is usually complex, making it difficult to 
determine the distribution of eIectrica1 shear stress, even after the fact. 

2. Field and flow configuration 
A rational description of the dynamics is made possible by providing for a 

control of the surface charge distribution on the jet. A cross-section of the ex- 
perimental configuration is shown in figure 2(a) .  The jet, with radius g ( x , t ) ,  is 

(4 (b) (4 
FIGURE 2. (a) Cross-sectional view of stream with control electrodes. (5) Distribution of 

stream potential. ( G )  Distribution of wall potential. 

ejected from an orifice a t  z = 0 and terminated at  x = 1. A stream potential 
q5&, t )  is constrained at the extremes of the jet by a potential V ,  as sketched in 
figure 2 ( b ) .  

The surface charges are controlled by a ‘wall’ having a potential $Jz, t )  
imposed by external sources on washer-shaped electrodes with inner radii R. 
This constrains the potential exterior to the stream in a manner suggested by 

9 F L M  47 
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previous work (Taylor 1969 a). Only sausage (axisymmetric) motions are con- 
sidered, and therefore, in the long-wave limit, the stream and surrounding wall 
form coaxial conductors. Although developments hold for a general distribution, 
attention is concentrated on experiments in which this potential is linear, 

J .  R. Melcher and E. P. Warren 

as sketched in figure 2 (c). In tbe long-wave limit, Gauss’s law shows that there is 
a radial electric field just outside the jet interface given by 

and, because eo E, is the free surface charge on the stream, it follows that #m 

provides a means of adjusting the electrical shear stress. 
The electrical shear surface force density T, is related to q5s and q5w by recog- 

nizing that over the jet cross-section, 

and therefore (4) 

3. Long-wave model for sausage motions 
Quasi-one-dimensional representations of shallow water waves (Stoker 1957) 

and compressible flows through nozzles and diffusers (Shapiro 1953, p. 73) are 
a part of the classic literature because they answer questions concerned with 
flow transition, choking and shock formation, and controlling boundary con- 
ditions as related to wave propagation. In  the spirit of such models, the jet 
electrohydrodynamics are formulated using as a starting point the integral 
laws. The assumption that variations in the jet cross-section occur slowly com- 
pared to lengths of interest (typically the distance R - [), is already implicit in 

A control volume V having fixed incremental length Az and a deforming, 
nearly cylindrical surface S,  which remains adjacent to the jet interface, is 
shown in figure 3. Conservation of mass density p and charge density p are 

(2)-(4)- 

represented by 

a q d P +  (pv+rE).nda = 0, atSv Js, 

where S, is composed of the two fixed portions of S intersecting the stream and 
having areas equal to those of the respective cross-sections. It is assumed in 
the following that the electrical shear stresses are completely transmitted by 
the internal viscous stresses to the bulk of the fluid, so that the velocity profile, 
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v 2: v(z,  t )  i,, is constant over a given stream cross-section. It then follows from 
(5), with S defined to remain just inside the interface, that 

(7) 
a 
- (pmt2Az) + /j~vnE~j211 = 0, at 

where llAll = A(z+Az)  -A(z) .  In  the limit Ax -+ 0, we obtain the first of three 
long-wave equations; for conservation of mass, 

a a  
at 
-p+& ( v p )  = 0. 

I, 
FIGURE 3. Incremental control volume with surface S just inside of the interface. 

The second relation follows from (6) wherein S is defined to be just outside the 
interface. It is recognized that there is no free charge density in the volume of 
the fluid. Thus, the convection current is due solely to surface charge cOEr, while 
the conduction is in the volume 

(9) 
a 2 (eOE,.2n@z) + jj~OE,2&jl + a l \ ~ t ~ E J  = 0. 

In  the limit Az -+ 0, with simplifications by virtue of (8) ,  and with the substitu- 
tion from (2) and (3), a second long-wave equation is obtained; for conservation 
of charge 

Finally, momentum balance in the axial direction is required. For the volume ?', 
defined now to remain just inside the interface, there are no electrical forces. 

9-2 
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The only force contributions are from the pressure p ,  the viscous stresses Tv, and 
the gravitational acceleration, taken as acting in the positive axial direction: 
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The first term on the right comes from the component of pressure acting in the 
axial direction on the almost vertical surface of 8. The last two terms are due, 
respectively, to the normal viscous stresses acting over the stream cross-sections 
and over the surface next to the interface. The limit is now taken as Az -+ 0 and 
the conservation of mass expression, (8), is used to write 

Pressure balance at  the interface relates p to the quasi-one-dimensional 
variables. In  terms of the Maxwell stresses, the pressure jump at  the interface is 

where po  is the ambient pressure of the surroundings (presumed to have negligible 
mass, hence constant pressure), and y is the surface tension. In view of (2) and 

In (13), q, is T,  as given by (4,) because we presume that the viscous shear 
stresses at the interface are held in balance by the electrical surface force density. 
Substitution of (15) and (4) into (13) gives the third equation for the long-wave 
model: for conservation of momentum, 

The quasi-one-dimensional model is summarized by (8), (10) and (16): #w is 
prescribed and v,  <, and #s are the variables dependent on (z, t ) .  

4. Non-linear wave propagation and domains of influence 
The propagation of disturbances is essential to understanding even the steady 

flow equilibria of the jet, andis considered in this section without the complication 
of viscous dissipation and a finite electrical relaxation time. This latter condition, 
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that e0/g is short compared to times of interest, reduces (10) to its last term, 
which is then integrated to obtain 

That is, with charge accumulation on the jet surface ignored in accounting for 
continuity of conduction current, the total axial current I ( t )  is independent of z. 
With the last term in (16) ignored, equations (8), (16) and (17) are three first- 
order equations having characteristic equations found in the usual manner 
(Shapiro 1953, p. 73). 

on lines in the z - t plane such that 

dv T (2a/[) df; = g" at (18) 

119) 

and 
I 

= ---ax 
U7i-k 

on lines of constant t .  

a t  the orifice and a downstream electrode, 
We are mainly interested here in cases with the stream potential constrained 

and so I(t)  is whatever it must be, at each instant in time, to satisfy the boundary 
conditions of (22) and (21) integrated over the stream length. 

Given initial values v = v(z, 0) and f ;  = g(z, 0) ,  the initial value of $s is deter- 
mined by (21) and (22). The velocity and radius an instant dt later are determined 
by (18) and (19), together with boundary conditions consistent with causality. 
If the flow is subcritical (v < a) ,  one upstream and one downstream condition are 
required. For supercritical flow (v > a) ,  two upstream conditions control. In  
either case, the boundary conditions on (21) hold. 

A n  initial pulse on the stream propagates with wave-fronts defined by the 
characteristic lines of (19). However, through the instantaneous adjustment of 
the current throughout the stream, the scale of a disturbance, as well as the 
slopes of the characteristic lines, are continually being adjusted so that in an 
average way the dynamics at one position instantaneously influence those a t  
another. With this proviso, weare justified in thinking of wave-fronts propagating 
along the characteristic lines defined by (19). Implicit to our argument is the 
assumption that a2 is positive, so that the characteristics are real. With the 
electrical excitations small, a2 is necessarily negative, because of the surface 
tension; the stream is subject to capillary instability. In  the following discussions, 
the regime a2 < 0 is assumed part of the supercritical r&gime, with the implied 
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upstream boundary conditions. Implicit is the assumption, supported by ex- 
perimental observations, that the capillary instability manifests itself as a 
growth in space rather than with time. 

The three terms of (20) represent the mechanisms for wave propagation. The 
first term is due to the electrical stresses normal to the stream surface, which 
(for q5s- q5w constant) decrease with an increase in the stream radius because of 
the I/r dependence of the radial electric field. The second term in (20) is due to 
the polarization force acting in concert with the electrical conduction as de- 
scribed in the introduction. The last term accountsfor surface tension and always 
tends to produce instability. For long waves, an increase in electrical excitations 
is tantamount to increasing the wave velocity, while surface tension slows the 
waves. 

From perturbation theory, we know that the stabilizing role of electrical 
normal stresses and the destabilizing effect of surface tension are reversed a t  
short wavelengths (Melcher 1963, p. 123). With a longitudinal wave-number k, 
these 'self-field' effects come into play for waves having k[ N- 1: our long-wave 
model is restricted to kc < 1 and even more kR < 1. 
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5.1. Plow rkgimes 5. Steady flow 

With a/at = 0, the mass rate of flow Q becomes an invariant along the stream: 
(8) is integrated to become v = Q / T T [ ~ -  

Note that, given Q, we have specified an upstream boundary condition. With (17) 
and (23) and the observation that pvav/az = a($pv2)/az, the inviscid steady form 

(23) 

of (16) is 
(24) 

The integral of this first-order equation must satisfy a second upstream or a 
downstream boundary condition, depending on whether v2 > a2 or v2 < u2. Re- 
member that pg* and (u) depend on q5s as well as E,  and hence solution requires 
the simultaneous integration of (21), with boundary conditions of (22). The 
numerator of (24) can be thought of as a net longitudinal force density due to 
gravity and the electrical shear stresses. Knowledge of the numerator and 
denominator in (24) is tantamount to knowing the local behaviour of the stream. 
For the denominator, observe that 

If we think of the difference (4, - &) in stream and wall potentials as known, 
then (25) typically depends on stream radius as sketched in figure 4. 

We distinguish three possibilities. First, if (e - eo) ( I /u )  < Q2p and q5s - q5w is 
not too large, the denominator is everywhere negative and a monotonically 
increasing function of c, is sketched in figure 4(a). The flow is everywhere super- 
critical. A positive pg* makes dEJdx negative, and gives rise to a decreasing radius. 
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Second, with (8-e,,) ( I /a)  > Q2p and @s- q5w yet small, the denominator of 
(24) is positive for 6 < fl,, corresponding to subcritical flow, or negative if 6 > 6, 
andtheflowissupercritical as shownby figure 4(b) .  Withpg" > 0 and supercritical 
conditions, the radius decreases and the denominator tends to make the rate of 

I 
I b 

E 

Super- t& critical critical 

(4 

(a):  (I/@2 < &" / (~ -  € 0 ) ;  ( b ) :  ( 1 1 4 2  > &ap/(€-  E d .  
FIGURE 4. The denominator of (24) sketched as a function of stream radius for 

change smaller. Then the denominator reverses its trend and precipitously 
approaches zero as 8 + &. At this critical radius, the slope approaches infinity 
and we expect that the flow chokes. If 9, - q5w is sufficiently large, the de- 
nominator of (24) can reverse sign twice as is varied, but because this case is 
found not to be a likely one, it is not discussed. The four possible situations are 
summarized by figure 5. 

The choking phenomenon is unusual. In  a supercritical flow, with pg* > 0, 
the stream accelerates toward the critical radius and a subcritical condition. If 
the material velocity increases, it  might be supposed that the flow becomes more 
supercritical. However, in order for there to be a critical radius, the polarization 
wave velocity (in the absence of surface tension) must exceed the material 
velocity, and the flow is supercritical only because the destabilizing effect of 
surface tension diminishes the total wave velocity to less than the jet velocity. 
As the stream becomes smaller, the relative effect of surface tension decreases, 
while conservation of mass and current makes the material and polarization 
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wave velocities increase to the same degree. Thus, the stream accelerates, but 
nevertheless approaches the subcritical condition. 

The critical radius is determined by (25) set equal to zero, and is presented in 
figure 6. Without electrical excitations, a2 is negative and there is no critical 
radius. If the local (q5s - #J is maintained at zero as I is raised, then a local 
critical radius obtains as 
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(26) 

E > 5 c  

(Super-critical) 
5 < 5 c  

(Sub-critical) 

FIGURE 5 .  Summary of the local flow rhgimes. - - - - -, critical radius. 

The critical radius is zero at the condition of (26), and then increases in value as 1 
is raised further. The wave velocity can be further increased by raising (4, - &)2, 

so that a critical radius, as illustrated by the broken curve of figure 6, may exist 
for values of I somewhat less than those required to satisfy (26). Note that (26) 
is in any case a sufficient condition to guarantee that a critical radius exists. 

5.2 .  flupercritical and positive pg* 
Laminar flow from a downward-directed water spigot is a limiting case of the 
supercritical pg" > 0 flow with no critical radius: one that we know accelerates. 
However, as we now see, the acceleration is as much a consequence of the super- 
criticality as it is of the acceleration of gravity. (If it were possible to obtain 
subcritical flow from a water faucet, we would see a stream which fattens.) 

It is also the supercritical, pg* > 0 rbgime, that has probably most often been 
observed with the longitudinal current. A typical stream is shown in figure 7, 
with the experiment arranged as depicted by figure 2. There is no experimental 
offset distance d ;  orifice and wall are grounded at z = 0. 
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A critical radius does not exist for the experimental conditions of figure 7 
(plate 1). Choking of the supercritical, pg* > 0, flow plays no apparent role in 
transitions to other flow regimes for the given conditions. The model represented 
by (17) and (24) gives a satisfactory representation of the steady flow. A com- 
parison of the results of a numerical integration and the experimental profile 
shown in figure 7 is illustrated in figure 8. Consistent with the supercritical con- 
dition, the upstream radius is used as the second mechanical boundary condition, 

PQ2 (Z/V)* - __ 
“ - E 0  

FIGURE 6 .  Critical radius as it depends on a function representing the current and flow 
rate. The stream-wall potential difference in kV is the parameter and the curves are the 
same, whether that parameter is positive or negative. The broken line is for negative 
( Z / d a - ~ Q a l ( c -  € 0 ) .  

with parameters as summarized in the figure caption. In  the entrance region, 
the fringing fields have an influence not accounted for by the long-wave model. 
However, it is found that the entrance radius has little effect on the theoretical 
curve of figure 8, as might be expected, since there is little electric stress in the 
entrance region where the jet is extremely thick. The stream and wall potentials 
are included with figure 8, and show that the region wherein both q5s - q5w (the 
surface charge) and d$,/dz are large is midway between the ends. The experi- 
mental potential shown is measured by using the photograph and known total 
current and voltage. 

The stream tends to become uniform for two reasons. As the potentials of the 
stream and wall approach each other at the downstream end, the electrical shear 
stress falls to zero. At the same time, the magnitude of the denominator of (24) 
is increasing rapidly as the radius becomes small, and these effects combine to 
make dQlz become small. The electrical contributions to pg* are dominant over 
much of the length; at  the middle of the jet, the second term in (21) exceeds the 
first by a factor of more than 200. 

As the flow rate is decreased, a threshold is observed below which the steady 
flow equilibrium is lost; the jet is unstable, and breaks up before it can ‘strike’ 
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to the lower electrode. The instability involves both the normal stress considera- 
tions described in connection with figure I and the equilibrium shear stress. 
The perturbation dynamics are the subject of work to be reported subsequently. 
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A> - kV 

FIGURE 8. Jet  radius 6 and potential $s as a function of longitudinal distance z. 0, x, data 
points taken from figure 7 (a) ; -, - - - - - , obtained from the numerical integration 
of (17) and (24). Data measured and used in the computation are: 

Q = 1.73 x ma/sec, V, = 17 kV, V, = 17.5 kV, I = 0.72 ,u amp, 
r = 1.7 x mhos/m, I = 3.3 cm, y = 6.34 x nt/m, 

( (0 )  = 2.2 x 10-3 m, p = 1 . 2 6 ~  lo3 kg/m3, c = 42.5c0, R = 7 .95mm.  

5.3. Subcritical and positive pg* 

A second type of transition from the supercritical pg" > 0 flow is made if 
is increased to slightly exceed V,. Then, there is a dramatic disruption of the 
accelerating flow of figure 7, replaced immediately by the decelerating flow of 
figure 9 (plate 2). This regime now persists even if V,is again decreased somewhat 
below V,. In  terms of (V,, V,), the flow is hysteretic. 

To which of the two decelerating flow rkgimes shown in figure 5 does this case 
belong '2 It is reasonable to suppose that pg" is now negative, because with V,  > V,, 
positive surface charges are induced on the lower extremity of the stream, and 
since I is still positive, the electrical shear stress tends to retard the motion. In 
fact, the new equilibrium has a retarding electrical shear stress spread over most 
of its length. Even so, pg* > 0 and the flow is subcritical, not supercritical: a 
view supported by several arguments. 

The observed radius apparently is less than the critical radius. Even though the 
stream radius is greatly increased, the critical radius has increased even more, 
because I jumps from the 0.3-0.7 pamp to the 7-40pamp range in the transition. 
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Figure 10 shows the experimentally observed stream radius just above the lower 
electrode, as a function of I /c .  The current is increased by increasing the stream 
potential K. For a given family of data, the difference V ,  - V,is then kept constant. 
In any case, there is little dependence of the stream radius on these low stream- 
wall potential 

- 

differences. The radii measured are the largest : upstream, the 

FIGVRE 10. Radius of decelerating stream near exit as a function of current for three 
potential differences between stream and wall at the exit. V ,  is typically varied from 13 
to 15.5 kV to obtain the variation in current. - , the theoretical critical radius with 
V ,  = V,. 0, (K-V,,,) = 0, A, (K-V,) = 500V; +, (V,-V,) = 1OOOV. 

radius is less than that shown. The solid line is the critical radius and is essentially 
the same curve for the values of V ,  - V,  in the cases shown. Within experimental 
errors, the stream radius a t  the base is the critical radius, and the stream is less 
than the critical radius over its length. 

The downstream radius is a somewhat increasing function of the downstream 
electrode radius, but if larger electrodes are used, a point is reached a t  which 
only a more abrupt change in the radius is obtained as the jet encounters the 
electrode. The critical radius is apparently an upper limit on the stream radius 
at  the downstream end. This is consistent with the subcritical pg* > 0 flow 
r6gime of figure 5, wherein the second boundary condition is at the downstream 
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end. As the stream is forced to approach critical radius, the slope d[/dx approaches 
infinity (see equation (24)). 

In  this decelerating flow rhgime, the stream is remarkably uniform and there- 
fore of approximately the critical radius over its length. This is possible only if 
the electrical shear stresses very nearly balance the gravitational acceleration. 
Not only is the denominator of (24) nearly zero, but so also is the numerator. 
We can solve the equation pg* = 0, (20)) for ($s-$w) to obtain 
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as the stream-wall potential difference required to maintain a uniform profile. 
An example is shown in figure 11 for the data given in the caption. The data 

$89  4 w  (kV) 

FIGURE 11. - , the measured stream potential inferred from figure 9. 0, based on the 
assumption that the numerator in (24) vanishes at each point, so that the potential dif- 
ference $ s - $ w  is given by (28). Experimental conditions are: V, = 13.5 kV, V, = 14.5 kV, 
I = 33.6 PA,  Q = 1.0 x 10-7 m3/seo, u = 2.2 x 10-5 mhos/m, R = 7.95 mm and I = 3 cm. 

points are based on (27) evaluated using the experimentally determined stream 
radii, wall potential, and I / r .  This potential profile is to be compared to the solid 
curve, which is the measured potential distribution based on the experimentally 
determined stream geometry and current. Over most of the jet, pg* is indeed very 
nearly zero. As might be expected, fringing fields disturb this balance at dis- 
tances on the order of R from the ends. At those positions where the data points 
fall above the stream potential, pg* > 0. A few points fall slightly below the 
curve, but by an amount less than the experimental error. Again, the suggestion 
is that the flow is subcritical. 
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Because of the entrance fields, evidenced by figure 11, the quasi-one-dimen- 
sional model does not hold in the vicinity of the orifice. In  fact, because 
- q5, = 0 a t  x = 0, there is no electrical shear stress there. The stream at; first 

necks down until its potential has risen above that of the adjacent wall, and then 
the shear stresses take over to produce the essentially uniform equilibrium. 

1 .o 
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FIGURE 12. Stream radius and potential for the decelerating case of figure 9. -, pre- 
dicted by numerical integration of (17) and (24), using as boundary conditions the potential 
and radius at z = 1 cm and the choking condition and potential at the outlet. The choking 
distance is matched by varying the offset distance d, which is 4.69 mm for the computa- 
tion, as shown in the figure. Experimental conditions are as given with figure 11. 

To avoid entrance effects in comparing observations to predictions using the 
long-wave model, the position x = 1 ern of figure 11 is taken as the entrance, with 
the radius, stream and wall potentials taken as those measured. The wall potential 
is then negative, and represented by V, and an offset distance d (defined in figure 2), 
which is negative. Numerical integration of (17 )  and (24) is performed with the 
downstream boundary conditions represented by the requirements that the flow 
choke at the outlet and the potential be V,. This choking distance is a function of 
the distance d,  which is varied to give choking a t  the outlet. The offset d,  arrived 
a t  in this way, is within 10 yo of the measured value, as shown in figure 12. 
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The stream potential distribution for decelerating flow characterized by 
figure 11 shows why the outlet potential V ,  must be lowered below V,  to make the 
flow r6gime switch from the decelerating to the accelerating mode. The choking 
at the downstream electrode results in a region over which the potential fall 
is small. Thus, V ,  can be less than V,, and the stream potential still remain greater 
than the wall potential over the region between the choking point and the inlet. 

6. Concluding remarks 
It is clear that many of the steady-flow characteristics of the stream can be 

predicted using the simple quasi-one-dimensional model. This model helps to 
explain why the range of fascinating phenomena reported by Taylor (19693) is 
possible. Of course, the price paid here for introducing a potential wall for the 
purpose of allowing a tractable representation of the shear stress is that the 
connexion with observations made without the wall is somewhat speculative. 
The structure does provide a stream control with practical advantages. 

Clearly, even the steady-state current-driven jet is as much governed by 
‘Mach’ conditions as by the magnitude and direction of the electrical shear 
stresses. Instead of the sound velocity, it is the velocity of electrohydrodynamic 
polarization waves that is critical. Taylor (1959) has shown similar dramatic 
influences of critical flow on the breakup and shaping of thin liquid sheets. In 
his studies, a capillary wave system was shown to determine many features of 
the purely hydrodynamic steady flow configurations. 

The model given here should also give meaningful predictions on the dynamic 
responses, say, of perturbations from the equilibria discussed. Stability of the 
stream as it is influenced by the equilibrium electrical shear stresses, viscosity, 
and finite electrical relaxation time, require careful attention. 

However, even with the control structure included in the experiment, the 
domain of validity for the long-wave model in representing stream stability is 
somewhat restricted. Perturbation wavelengths shorter than 2nR are likely to 
be important in determining stability. There is also a subtle restriction on the 
viscosity. The stream must be sufficiently viscous to justify taking the velocity 
profile as essentially uniform, if the model developed here is to be valid. But, in 
our computations, the longitudinal viscous force density (the last term in (16)), 
is ignored, thus removing the viscosity as an explicit parameter. If we take the 
longitudinal force as being on the order of pg, these approximations require, 
respectively, that (,uv/R2 < pg < ,uv/c2). I n  our experiments, ,u = 0.36kg/m-sec, 
and typically, the inequalities are satisfied, but with a greater viscosity, the last 
term in (16) could be important to the steady flow. A lesser viscosity could 
invalidate the long-wave model. The physical phenomena described in § 5 are 
shown in a newly released educational film (Melcher 1970). 

R. E. Zelazo provided helpful suggestions concerning the long-wave model. This 
work was supported by NASA Grant NGL-22-009-014. 
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FIGURE 7. Accelerating stream between orifice a t  top and electrode a t  bottom. Horizontal 
lines are the wall electrodes. Without fields, glycerin drips from orifice. Steady flow is 
established by simultaneously raising V, and V, until the stream ‘strikes’ to the lower 
electrode. Experimental conditions are those of figure 8. 
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FIGURE 9. Decelerating stream. Orifice is at top with choking evident a t  the lower electrode. 
Data as given with figures 11 and 12. 
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